oblate spheroid - ορισμός. Τι είναι το oblate spheroid
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι oblate spheroid - ορισμός

VOLUME FORMED BY ROTATING AN ELLIPSE AROUND ONE OF ITS AXES; SPECIAL CASE OF ELLIPSOID
Oblate spheroid; Prolate spheroid; Spheroids; Oblate sphere; Oblateness Constant; Oblateness constant; Sphereoids; Sphereoid; Ellipsoid of revolution; Prolate; Spheroidal; Obloid; Oblate ellipsoid; Oblate shape; Rotational ellipsoid
  • 360px

prolate         
['pr??le?t]
¦ adjective Geometry (of a spheroid) lengthened in the direction of a polar diameter. Often contrasted with oblate2.
Origin
C17: from L. prolatus 'carried forward', past participle of proferre 'prolong', from pro- 'forward' + ferre 'carry'.
Prolate         
·vt To Utter; to Pronounce.
II. Prolate ·adj Stretched out; extended; especially, elongated in the direction of a line joining the poles; as, a prolate spheroid;
- opposed to oblate.
Spheroid         
·noun A body or figure approaching to a sphere, but not perfectly spherical; ·esp., a solid generated by the revolution of an ellipse about one of its axes.

Βικιπαίδεια

Spheroid

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M. If the generating ellipse is a circle, the result is a sphere.

Due to the combined effects of gravity and rotation, the figure of the Earth (and of all planets) is not quite a sphere, but instead is slightly flattened in the direction of its axis of rotation. For that reason, in cartography and geodesy the Earth is often approximated by an oblate spheroid, known as the reference ellipsoid, instead of a sphere. The current World Geodetic System model uses a spheroid whose radius is 6,378.137 km (3,963.191 mi) at the Equator and 6,356.752 km (3,949.903 mi) at the poles.

The word spheroid originally meant "an approximately spherical body", admitting irregularities even beyond the bi- or tri-axial ellipsoidal shape; that is how the term is used in some older papers on geodesy (for example, referring to truncated spherical harmonic expansions of the Earth's gravity geopotential model).